
Page 1 of 11

A Model-based Approach to
Architectural Frameworks

Simon Perry, Principal Consultant, Atego (simon.perry@atego.com)

Copyright © 2014 by Atego. Published and used by INCOSE UK Ltd and INCOSE with permission.

Abstract

The concept of an architecture is now seen as essential to any systems engineering undertaking and

is a core element of any model-based systems engineering approach. An architecture should, as

advocated by industry best practice, be based on an architectural framework (AF). An AF defines a

number of allowed viewpoints of a system that any architecture based on the AF can contain,

together with consistency rules between the viewpoints. Many AFs exist and many organisations will

adopt one of these AFs for the development of their system architecture. Unfortunately, this is often

done without first assessing the stakeholder concerns that the architecture is to address against the

viewpoints defined in the chosen AF, resulting in the adoption of an unsuitable AF that unnecessarily

constrains or twists the resulting architecture. If the stakeholder concerns are considered, then the

conclusion may be that a bespoke AF is needed. This paper discusses a model-based approach to the

definition of AFs, the Framework for Architectural Frameworks (FAF), based on the concept of an

ontology that defines concepts and the relationships between them, defined viewpoints that use the

concepts from the ontology and that are organised into a framework. An example of the use of the

FAF is given.

1. Introduction - What Are AFs and Why Are They Important?
Architectural design is seen as an essential part of systems engineering and is one of the key

technical processes in ISO15288:2008 “Systems and software engineering – System life cycle

processes” [ISO15288:2008]. Architectures are now seen as essential to any systems engineering

undertaking and are a core element of any model-based systems engineering (MBSE) approach.

An architecture must cover three key areas: [Stevens et al 1998]

• System structure, defining the major components of the system, their organisation and

structure.

• System behaviour, defining the “dynamic response of the system to events, providing a

basis for reasoning about the system.” (our italics)

• System layout, defining the physical layout and packaging of the system.

Unfortunately, architectures are often developed that describe only structure. Another key point

regarding architectures is that they must be seen and treated as evolving artefacts that will change

through time and require maintenance. Too often they are created, at great expense, and then

forgotten.

Page 2 of 11

A key enabler for the production of an architectural design is the architectural framework (AF).

Many, such as [Dickerson & Mavris 2009], consider AFs to be an essential tool; architectures should

always be based on an architectural framework.

An AF defines a number of viewpoints of a system that any architecture based on the AF can contain,

together with consistency rules between the viewpoints. These viewpoints are often grouped into

perspectives that relate viewpoints that address the same architectural concerns. When an

architecture is produced that conforms to an AF, then the architecture is composed of a number of

views, each of which is an instance of a viewpoint. ISO 42010 ‘Systems and software engineering –

Architecture description’ [ISO42010:2011] provides a definition of the terms associated with

architectural frameworks.

The use of an AF helps to ensure a consistent approach to the production of an architecture.

Engineers know what is expected of them because the views that can be produced are defined. This

helps ensure that the architecture is fit for purpose by ensuring that all the concerns that the

architecture must address are covered.

1.1 The Problem with the Existing Approach to AFs
Many architectural frameworks exits, such as MODAF [MODAF 2014], DoDAF, NAF, TRAK, Zachman

[Zachman 2008] etc. However, many architectural frameworks are usually created for a specific

purpose (such as military acquisition or enterprise architecture) and as such the viewpoints that they

define are those that are deemed necessary to meet the requirements of that framework. This

means that not all the viewpoints in a given framework may be relevant or that a framework may be

missing needed viewpoints.

Many organisations will adopt one of these AFs for the development of their system architecture.

Unfortunately, this is often done without first assessing the stakeholder concerns that the

architecture is to address against the viewpoints defined in the chosen AF. This often results in the

adoption of an unsuitable AF that unnecessarily constrains or twists the resulting architecture.

For example, consider MODAF. It was created to assist the MOD in acquisition of systems but is

often used by suppliers when creating architectures internally (i.e. for their own internal system

development work), without any consideration as to whether MODAF defines viewpoints that

address the concerns that their architecture must capture. This results in architectures that are very

good examples of MODAF architectures but which are not fit for purpose as system engineering

architectures. If the stakeholder concerns are considered by an organisation, then the conclusion

may be that a bespoke AF is needed. This paper presents a model-based approach to the definition

of architectural frameworks.

2. The Framework for Architectural Frameworks (FAF)
The Framework for Architectural Frameworks (FAF) was developed to improve the definition of

architectural frameworks by forcing anyone defining an AF to consider the following six questions:

1. What is the purpose of the AF?

2. What domain concepts must the AF support?

3. What viewpoints are required?

Page 3 of 11

4. What is the purpose of each viewpoint?

5. What is the definition of each viewpoint in terms of the identified domain concepts?

6. What rules constrain the use of the AF?

The FAF addresses the six questions through an MBSE approach that is based around the ideas of

ontology, viewpoints and framework:

 Ontology - Defines concepts and relationships between them

 Viewpoints and Framework - Defines viewpoints organised into a framework. Viewpoints

can only use concepts from the ontology

The FAF consists of an ontology, six viewpoints and supporting processes and is itself defined using

the FAF i.e. the FAF is defined in terms of the six viewpoints of the FAF (!). This paper, in the

following section, describes the ontology and the six viewpoints. Section 3 gives an example of its

use. The supporting processes are not discussed in this paper; the reader is directed to ‘SysML for

Systems Engineering: 2nd edition: A model-based approach’ [Holt & Perry 2013] which gives a

complete definition of the FAF, its supporting processes and many examples of its use.

It should also be noted at this point that the FAF is intended to be used in the definition of any size

of architectural framework, from a complete AF, through frameworks that address a particular topic

(such as requirements) through to so-called enabling patterns - specific constructs of modelling

elements whose combination and subsequent use enables a number of systems engineering

applications. An example of an enabling pattern would be one used for the definition of interfaces or

one used to ensure traceability throughout a model of a system

The FAF Ontology
The FAF is built around an ontology that defines a number of concepts, and their relationships,

relating to architectures and architectural frameworks. The ontology for the FAF is shown in Figure 1

and is based on [ISO42010:2011].

Page 4 of 11

Figure 1 - Ontology for Architectures and Architectural Frameworks

The concepts shown on Figure 1 are defined as follows:

 Architectural Framework - a defined set of one or more Viewpoints and an Ontology. The

Architectural Framework is used to structure an Architecture from the point of view of a

specific industry, stakeholder role set, or organisation. The Architectural Framework is

defined so that it meets the needs (requirements) defined by one or more Architectural

Framework Concerns. An Architectural Framework is created so that it complies with zero or

more Standards.

 Architectural Framework Concern - defines a need that an Architectural Framework has to

address.

 Ontology - an element of an Architectural Framework that defines all the concepts and

terms (one or more Ontology Element) that relate to any Architecture structured according

to the Architectural Framework.

 Ontology Element - the concepts that make up an Ontology. Each Ontology Element can be

related to each other and is used in the definition of each Viewpoint (through the

corresponding Viewpoint Elements that makes up a Viewpoint). The provenance for each

Ontology Element is provided by one or more Standard.

 Viewpoint - a definition of the structure and content of a View. The content and structure of

a Viewpoint uses the concepts and terms from the Ontology via one or more Viewpoint

Elements that make up the Viewpoint. Each Viewpoint is defined so that it meets the needs

defined by one or more Viewpoint Concern.

 Viewpoint Concern - defines a need that a Viewpoint has to address.

 Viewpoint Element - the elements that make up a Viewpoint. Each Viewpoint Element must

correspond to an Ontology Element from the Ontology that is part of the Architectural

Framework.

1..*

1

1..*

1

1..*

1

1 1..*

1..*

1

*

1

1

1..*

1 1..*

1 1..*

1

1..*

1

1..*

1..*

1..*

1 1..*

1..*

1

1
1..*

1..*

1

1

1

111

1..*

1..*

1

1..*

1

1

1

1..*

1..*

*

1

ODV [Package] Ontology Definition View [AFs & Architectures]

«block»

Viewpoint

«block»

Ontology

«block»

Viewpoint Element

«block»

Ontology Element

«block»

Architectural Framework

Concern

«block»

Viewpoint Concern

«block»

Architectural Framework

«block»

View

«block»

View Element

«block»

Perspective

«block»

Architecture

«block»

System

«block»

Standard

«block»

Rule

1..*

1

1..*

1

1..*

1

1 1..*

corresponds to

1..*

1

*

1

is related to

1

1..*

is related to

1 1..*

visualises

1 1..*uses elements from

1

1..*

represents need for

1

1..*represents need for

1..*

1..*

is derived from

1 1..*

conforms to

1..*

1

is related to

1
1..*

is related to

1..*

1

1

1

11 describes structure of
1

1..*

constrains

1..*

1

collects together

1..*

1

collects together

1

1 describes

1..*

1..*

provides provenance for

*

1

complies with

{via}

Page 5 of 11

 Architecture - a description of a System, made up of one or more Views. One or more related

View can be collected together into a Perspective.

 View - the visualisation of part of the Architecture of a System that conforms to the

structure and content defined in a Viewpoint. A View is made up of one or more View

Elements.

 View Element - the elements that make up a View. Each View Element visualises a Viewpoint

Element that makes up the Viewpoint to which the View, on which the View Element

appears, conforms.

 Perspective - a collection of one or more Views (and hence also one or more defining

Viewpoints) that are related by their purpose. That is, one or more Views which address the

same architectural needs, rather than being related in some other way, such as by mode of

visualisation, for example.

 Rule - a construct that constrains the Architectural Framework (and hence the resulting

Architecture) in some way, for example by defining one or more Viewpoints that are

required as a minimum.

 System - set of interacting elements organised to satisfy one or more needs. The artefact

being engineered that the Architecture describes.

A note about naming style: from this point forwards, any reference to a concept from the FAF

Ontology will be capitalised to indicate that the term is being used in the sense defined on the

Ontology, rather than in its everyday usage.

It is important to note here that an Architecture is simply considered to be a description of a System,

represented by a number of Views that are created according to a number of predefined Viewpoints

from a given Architectural Framework.

The FAF Viewpoints
The FAF defines six Viewpoints, as shown in Figure 2.

Figure 2 - The Six FAF Viewpoints

1

1..*

11

1

1..*

1 1

1 1
1

1

VRV [Package] Viewpoint Relationships View [AF & Architectures Perspective]

AF & Architectures Perspective

«block»

AF Context Viewpoint

«block»

Ontology Definition

Viewpoint

«block»

Viewpoint Relationships

Viewpoint

«block»

Viewpoint Context

Viewpoint

«block»

Viewpoint Definition

Viewpoint

«block»

Rules Definition

Viewpoint

«block»

AF Context Viewpoint

«block»

Ontology Definition

Viewpoint

«block»

Viewpoint Relationships

Viewpoint

«block»

Viewpoint Context

Viewpoint

«block»

Viewpoint Definition

Viewpoint

«block»

Rules Definition

Viewpoint

1

1..*

defines viewpoint using elements from

11

defines viewpoint to meet needs from

1

1..*

is derived from

1 1

defines relationships between viewpoints defined in

1 1

is derived from
1

1

is derived from {The Rules Definition Viewpoint is related to ALL

the other Viewpoints and defines the Rules that

constrain the Architectural Framework.

Relationships to the other Viewpoints are omitted

from this diagram for clarity.}

Page 6 of 11

Each of the six Viewpoints is designed to address one of the six questions presented above. Each

Viewpoint is briefly described in this section. Examples are given in Section 3.

The AF Context Viewpoint (AFCV) addresses the question ‘What is the purpose of the AF?’ It defines

the context for the Architectural Framework. That is, it represents the Architectural Framework

Concerns in context, establishing why the Architectural Framework is needed.

The Ontology Definition Viewpoint (ODV) addresses the question ‘What domain concepts must the

AF support?’ It defines the Ontology for the Architectural Framework. It is derived from the AF

Context Viewpoint and defines the concepts that can appear on a Viewpoint.

The Viewpoint Relationships Viewpoint (VRV) addresses the question ‘What viewpoints are

required?’ It shows the relationships between the Viewpoints that make up an Architectural

Framework and groups them into Perspectives. It is derived from the Ontology Definition Viewpoint.

The Viewpoint Context Viewpoint (VCV) addresses the question ‘What is the purpose of each

viewpoint?’ It defines the Context for a particular Viewpoint. That is, it represents the Viewpoint

Concerns in context for a particular Viewpoint, establishing why the Viewpoint is needed. It is

derived from the AF Context Viewpoint.

The Viewpoint Definition Viewpoint (VDV) addresses the question ‘What is the definition of each

viewpoint in terms of the identified domain concepts?’ It defines a particular Viewpoint, showing the

Viewpoint Elements (and hence the Ontology Elements) that appear on the Viewpoint.

The Rules Definition Viewpoint (RDV) addresses the question ‘What rules constrain the use of the

AF?’ It defines the various Rules that constrain the Architectural Framework.

The six Viewpoints are collected into a single Perspective, the Architectural Framework Perspective,

as shown by the enclosing package in Figure 2.

Two points are worth noting here. First, that each Viewpoint that is being defined in an Architectural

Framework will have its own VCV (establishing its purpose) and VDV (defining its allowed content).

Second, the use of singular descriptions for the other Viewpoints does not imply that there is only a

single instance (a View) of each in the AF being defined. Thus, for example, a number of VRVs may

be required, perhaps showing one Perspective per VRV.

3. The FAF in Use – an example of use for the Traceability Pattern
This section presents a small example of the use of the FAF. In this case, the FAF is used to define an

enabling pattern rather than a full AF. It is not the intention here to describe the details of the

pattern, but simply to give examples of the use of each of the six FAF Viewpoints. For this reason,

not all the Views of the pattern are shown. For example, since the pattern contains four Viewpoints

(see Figure 6), the full definition contains four VCVs and four VDVs, one per Viewpoint. For

illustration, only one is shown. The enabling pattern used is the Traceability Pattern, one of a

number of enabling patterns defined by the author.

Page 7 of 11

Two points are worth noting here. Firstly, the diagrams below are all Views. They are instances

(Views) of FAF Viewpoints that themselves define Viewpoints. This is how the FAF is used. Every time

the FAF is used to define an AF or a pattern, Views that conform to the six FAF Viewpoints are

created. These Views define the Viewpoints of the AF or pattern being defined. Secondly, remember

that these Views are defining the Traceability Pattern by defining its Viewpoints. When the

Traceability Pattern is used, then Views that conform to these defined Viewpoints are produced.

Examples of such Views from the Traceability Pattern in use are not shown or discussed here.

Figure 3 shows the AFCV for the

Traceability Pattern. It captures the

needs (in the terminology defined in

Figure 1, the Architectural Framework

Concerns) that the pattern is designed to

address. When using UML or SysML as

the modelling language, the AFCV can be

represented using a use case diagram, as

has been done here.

With the needs defined, it is necessary to

define the concepts and relationships

between them that apply to the AF or pattern. In this case, concepts relating to traceability. These

are captured on the ODV, as shown in Figure 4. When using UML or SysML as the modelling

language, the ODV can be represented using a class or block definition diagram, as has been done

here.

Remember, the purpose of the

ODV is to define all the concepts

and relationships that are

relevant to the framework or

pattern being defined. Only

elements appearing on the ODV

can be used in the definition of

the Viewpoints for the

framework or pattern.

The ODV is a useful guide to the

possible Viewpoints that the

framework or patttern is to

AFCV Pattern Aims - Traceability

Traceability Pattern Context

Systems
Engineer

Systems
Engineering

Manager

Establish
traceability

Define allowed
traceability

Define types of
traces allowed

Define types of
elements that can
be traced to/from

Support impact
analysis

Support traceability
througjhout model

«include»

«include»

«include»

«include»

«include»«constrain»

«constrain»

Figure 3 - Example AFCV

1 1

*

1 1

*
1 1

1 11 1

ODV Concepts - Traceability

Traceable Element
{Abstract}

View Element

Traceability Relationship

View

Relationship Type

Viewpoint ElementViewpoint

Traceable Type
{Abstract}

1 1

defines the type of

*

1

is traceable to

1

*

can be traced to

1 1

defines the type of

1 1

defines the type of

1 1

defines the type of

Figure 4 - Example ODV

1..*

1..*

1..* 1..* *

1..*

VRV Framework - Traceability

Relationship Identification

Viewpoint

Traceability Viewpoint

Traceability Identification

Viewpoint

Impact Viewpoint

1..*

1..* identifies relationships used on

1..* 1..*

identifies elements and relationships used on

*

1..*

shows traceability tree from

Figure 6 - Example VRV

RDV Rules - Traceability

«Rule»

Rule Text

As a minimum one Traceability

Identification Viewpoint, one

Relationship Identification Viewpoint

and one Traceability Viewpoint must

be produced.

Rule TR1

«Rule»

Rule Text

All Traceability Relationships must

be defined as Relationship Types on

a Relationship Identification

Viewpoint.

Rule TR2

«Rule»

Rule Text
All Traceable Elements must be

defined as Traceable Types on a

Traceability Identification Viewpoint.

Rule TR3

«Rule»

Rule Text
The permitted Relationship Types

that can occur between each pair of

Traceable Types must be defined on

a Traceability Identification Viewpoint.

Rule TR4

«Rule»

Rule Text
If a Traceable Type, T1, has a defined Relationship Type, R1, to another

Traceable Type, T2, then every Traceable Element defined by Traceable Type

T1 must have a corresponding Traceability Relationship of type R1 to another

Traceable Element defined by Traceable Type T2.

Rule TR5

Figure 5 - Example RDV

Page 8 of 11

contain. Once these Viewpoints have been identified, they should be captured on a VRV. This

identifies the Viewpoints, establishes the main relationships between them and, if necessary, allows

them to be grouped into Perspectives. The VRV for the Traceability Pattern is shown in Figure 6.

When using UML or SysML as the modelling language, the VRV can be represented using a class or

block definition diagram, as has been done here.

Most frameworks and patterns will have Rules that constrain their use. There are typically three

types of Rules: Rules that define the minimum set of Views that have to be present in anything

based on the framework or pattern; Rules that define consistency checks between Viewpoints and

the Views based on them; Rules that define consistency checks within Viewpoints and the Views

based on them. Such rules are captured in the RDV, as shown in Figure 5. When using UML or SysML

as the modelling language, the RDV can be represented using a class or block definition diagram, as

has been done here. Note the use of the «Rule» stereotype and associated ‘Rule Text’ tag to mark

these elements as Rules. Of course, these Rules (and hence the RDV) can just as easily be

represented using text in a simple table.

Page 9 of 11

Each of the Viewpoints are then defined

through a VCV, which captures the needs

(Viewpoint Concerns) that the Viewpoint is

intended to address, and a VDV which

defines the Viewpoint in terms of the

Ontology Elements that can appear on it.

An example VCV is given in Figure 7. When

using UML or SysML as the modelling

language, the VCV can be represented using

a use case diagram, as has been done here.

Note that the Viewpoint Concerns shown on a

VCV will typically be a subset of the Architectural

Framework Concerns shown on the AFCV.

An example VDV is given in Figure 8. When using

UML or SysML as the modelling language, the VDV

can be represented using a class or block

definition diagram, as has been done here.

Remember that a VDV can only use Ontology

Elements from the ODV. If a concept is needed

that doesn’t appear on the ODV then the ODV

must be updated to include that concept.

Conversely, once all the Viewpoints are defined,

then every Ontology Element must appear on at

least one VDV. If there are Ontology Elements that

are not used, then either there are missing Viewpoints or the elements can be removed from the

Ontology.

Finally, although the example Views have been presented here in a logical order, their production

typically does not proceed in a linear fashion. Rather, the modeller must be prepared to iterate

across a number of the Views until all are complete.

The FAF in Use – Other Examples
The FAF is currently being used in a number of organisations and for a number of purposes. These

include:

 Automotive – The FAF is being used for the definition of a bespoke AF used for the definition

of architectures for Electric Power Steering (EPS) systems. It is being used to both better

understand existing architectures and to define a generic future EPS architecture.

 Home entertainment – The FAF is being used for the definition of a bespoke AF for the

media streaming architecture for high-end home audio-visual systems (by B&O). It is

currently being used in the engineering of future B&O home entertainment systems.

 Fault modelling – The FAF has been used for the definition of a fault modelling framework

(the FMAF) that focuses on support for fault modelling as part of the architectural modelling

of Systems and SoS. The FMAF has been created by Newcastle University as part of the

VCV Viewpoint Aims - Relationship Identification Viewpoint

Relationship Identification Viewpoint Context

Systems
Engineer

Establish
traceability

Define allowed
traceability

Define types of
traces allowed

«include»

«include»

Figure 8 - Example VCV

1..*

VDV Framework - Relationship Identification Viewpoint

Relationship Identification Viewpoint

Relationship Type

1..*

Figure 7 - Example VDV

Page 10 of 11

COMPASS project. (See http://www.compass-research.eu/Project/Deliverables/D242.pdf).

The FMAF includes support for

o Definition of faults, errors and failures

o Identification of the causal chains of dependability threats (faults, errors and

failures)

o Identification of CSs (and the connections and interfaces between them) needed to

tolerate faults

o Identification of erroneous behaviour/recovery scenarios and processes

o Behaviour description of processes in the presence of faults and recovery processes

 Enabling patterns – The FAF is being used in the definition of additional systems engineering

enabling patterns both by the author and by the INCOSE UK MBSE WG.

An example MBSE AF that is defined using the FAF is outlined in [Holt & Perry 2013].

4. Conclusions
When creating a System Architecture, the use of an Architectural Framework can help ensure

consistency of approach and coverage of the correct architectural concerns. However, the choice of

Architectural Framework must be made to ensure that the concerns can be addressed by an

Architecture based on the Architectural Framework. This is not always the case, because

organisations often adopt an Architectural Framework without understanding its intent, suitability

and coverage of concerns. Such a choice may, therefore, require the creation of a bespoke AF.

An MBSE approach to the definition of an Architectural Framework allows the Architectural

Framework to be created using the same tools and techniques as are used in an MBSE approach to

the definition of the System. The Framework for Architectural Frameworks (FAF) provides such an

MBSE approach to the definition of Architectural Frameworks.

The FAF has been used successfully by the author and other organisations in the definition of

Architectural Frameworks in a range of application domains including automotive, high-end home

entertainment & fault-modelling. In addition, the FAF is being used both by the author and by the

INCOSE UK MBSE Working Group in ongoing work on the definition of enabling patterns for system

engineering.

The FAF is fully defined and described in [Holt & Perry 2013], which also presents a process that can

be used with the FAF for the definition of an Architectural Framework, along with an extended

example that demonstrates the use of the FAF.

5. References & Further Information
The key references used in this work are:

[Dickerson & Mavris 2009] Dickerson, C.E. & Mavris, D.N. ‘Architecture and Principles of

Systems Engineering’. CRC Press, 2009

[Holt & Perry 2013] Holt, J. & Perry, S. ‘SysML for Systems Engineering: 2nd edition: A

model-based approach’. IET Publishing, 2013

Page 11 of 11

[ISO15288:2008] ISO/IEC. ‘ISO/IEC 15288:2008 Systems and software engineering –

System life cycle processes’. 2nd Edn, International Organisation for

Standardisation; 2008

[ISO42010:2011] ISO/IEC. ‘ISO/IEC 42010:2011 Systems and software engineering —

Architecture description’. International Organisation for

Standardisation; 2011

[MODAF 2014] The Ministry of Defence Architectural Framework, 2010:

https://www.gov.uk/mod-architecture-framework (Accessed

September 2014)

[Stevens et al 1998] Stevens, R., Brook, P., Jackson, K. & Arnold, S. ‘Systems Engineering –

coping with complexity’. London: Prentice Hall Europe; 1998

[Zachman 2008] Zachman, J.A. ‘Concise Definition of the Zachman Framework’.

Zachman International; 2008. Available from

http://www.zachman.com/about-the-zachman-framework; accessed

September 2014

